Small noise limit of a randomly perturbed Hamiltonian system - a variational approach

Upanshu Sharma^{*†1}, Manh Duong², Agnes Lamacz³, and Mark Peletier¹

¹Eindhoven University of Technology (TUE) – Eindhoven University of Technology Den Dolech 2 5612 AZ Eindhoven, Netherlands

²Warwick Mathematics Institute (WMI) – Mathematics Institute, Zeeman Building, The University of Warwick, Coventry CV4 7AL, United Kingdom, United Kingdom

³Fakultät für Mathematik [Dortmund] – Vogelpothsweg 87, D-44227 Dortmund, Germany

Abstract

Coarse-graining or dimension reduction is the procedure of approximating a system by a simpler or lower dimensional one. This is typically achieved by passage to the limit of some parameter in the original system. Variational-evolution structures have been successfully used in recent years to pass to the limit in case of dissipative (gradient-flow) systems. However these structures do not straightforwardly apply to systems which additionally have inertial effects. In this talk, I will present a variational technique arising from large-deviations theory which applies to a class of systems where both dissipative and inertial effects are present. I will present the technique by means of an example, the small noise limit of a randomly perturbed Hamiltonian system.

^{*}Speaker

 $^{^{\}dagger}$ Corresponding author: u.sharma@tue.nl