From the H theorem to adiabaticity shortcuts

Emmanuel Trizac^{*1} and David Guéry-Odelin 2

¹Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS) – LPTMS – Université Paris-Sud, France

 2 Laboratoire Collisions Agregats Reactivite (LCAR) – Université Paul Sabatier [UPS] - Toulouse III, CNRS : UMR5589, Université Paul Sabatier (UPS) - Toulouse III – 31062 Toulouse cedex 04 - France, France

Abstract

Inspired from H-theorem requirements, a novel class of exact solutions to the Boltzmann equation is uncovered, for both the classical and quantum formulations. These solutions, valid for arbitrary collision laws, hold for time-dependent confinement. We exploit them, in a reverse-engineering perspective, to work out a protocol that shortcuts any adiabatic transformation between two equilibrium states in an arbitrarily short time span, for an interacting system. Particle simulations corroborate the analytical predictions.

^{*}Speaker